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ABSTRACT

Statistical analyses of the dynamics of some two-dimension-

al linear vehicles traveling on a rough track are performed to deter-

mine the influence on two aspects of vehicle ride of a set of parame-

ters which include wheel base length, idealized tire imprint length,

speed, and damping constant. It is assumed that the vehicles move

with constant horizontal velocity on a second order, weakly station-

ary and mean square continuous random track with contact maintain-

ed at all times between the idealized tires and the track. The two

aspects of vehicle ride used as measures of the ride roughness are

peak value of power spectral density and variance of frame acceler-

ation, the frame acceleration being either vertical at the c. g. of

frame, vertical at the point over idealized wheel, or angular (pitch-

ing).

For the same speed, damping, power spectral density for the

track, and two particular vehicles, the idealized tire imprint length

was a relatively unimportant parameter over a fairly large range of

values. On the other hand, one parameter which included the wheel

base length was found to be important under the same conditions.

Four sets of parameter values were found which at the same

speed produced best or optimal rides for vertical acceleration at the

frame c. g. and over the wheel, depending upon which measure of

ride roughness was employed. The influence of speed was then ex-

amined on vehicles having these sets of parameter values. In all

cases, increasing speeds produced sharp increases in ride roughness.
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PREFACE

This is the sixth in a series of papers studying the

motion of vehicles under random excitation. Prior papers

are:

a. Land Locomotion Report No. 48, Behavior of a

Linear One Degree of Freedom Vehicle Moving With

Constant Velocity on a Stationary Gaussian Random

Track.

b. Land Locomotion Report No. 56, On the Behavior of

a Linear Two Degree of Freedom Vehicle Moving With

Constant Velocity on a Track Whose Contour is a

Stationary Random Process.

c. Land Locomotion Report No. 65, On the Statistical

Analysis of the Motion of Some Simple Vehicles

Moving on a Random Track, which also includes an

appendix which defines many terms and derives many

basic concepts used in the series.

d. Land Locomotion Report No. 66, On the Statistical

Analysis of the Motion of Some Simple Two-Dimensional

Linear Vehicles Moving on a Random Track.

e. Land Locomotion Report No. 72, On the Statistical

Properties of the Ground Contour and its Relation

to the Study of Land Locomotion.
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I. Introduction

The motivation for the investigation reported in this paper

and the need for a statistical description of the ground in the inves-

tigation are described in the Introduction to the preceding paper.

Hence, the remarks of this section only need be directed to those

aspects of vehicle dynamics and "optimal ride" not previously com-

mented upon.

A wide variety of one, two, and three dimensional models

have been suggested for a study of the dynamics of real vehicles.

Some of these models are linear while others are non-linear. The

one we shall employ in this paper [ 1 ] [ 2 ] is sufficiently simple

so that the mathematics is reasonably tractable and yet sufficiently

complicated so as to make parameter studies interesting. A sketch

of this linear two-dimensional vehicle is given in Figure 1.

This vehicle consists of a rigid frame connected at each end

via a parallel arranged spring and damper suspension element to an

idealized wheel-tire. In the initial stages of the investigation, a num-

ber of wheel-tire models were considered. However, on simplifying

each of them to a case which could be described in a reasonable math-

ematical form, the wheel-tire model shown was obtained. It has mass

but no moment of inertia, and it is connected to the ground or track

through a spring-damper arrangement distributed along a massless

rigid bar. Contact with the track over the entire foot-pring length is

assumed. Thus, the idealized tire acts much like a deformable

slipper gliding over the track. Bouncing is not permitted in the sense

that contact over the entire foot-print length is maintained at all times,

but the wheel mass may oscillate vertically on the suspension element

and the idealized tire. We also assume that the elements shown verti-

cal always remain in that position. The vehicle of Figure 1 thus posses-

ses the frame translation and pitch and some of the simpler aspects of



whcel-tire dynamics common to a real vehicle. However, it is clear

that fraxne roll, tire bounding off the track, etc. are excluded.

To estimate whether one vehicle design can be driven faster

than another design, or whether a given vehicle design can be driv-

en at a definite speed over a terrain of specified roughness requires

that there be some quantitative ride criterion against which project-

ed vehicle capability can be measured. At the present time, a Ltni-

versally accepted ride criterion is not available.

It is a commonly held view among individuals associated with

the military wheeled-vehicle field that such vehicles have the reserve

power and sufficient mechanical strength to go to much greater speeds

than presently being attained under off-road conditions. Moreover, if

speeds are reached that begin to break parts, or if more power is need-

ed to increase speed, these individuals believe that the needed strength

and power can easily be supplied. The driver, occupants, or cargo of
vehicles thus appears to provide a basic limitation on vehicle speed.

The frame motion of the vehicle model is limited to vertical

translation and pitch. The acceleration of each appears to influence

certain aspects of ride. For example, bouncing of the driver, say,

upon his seat is associated with large vertical frame acceleration.

When such bouncing becomes sufficiently severe, it results in physical

injury. Severe oscillatory acceleration in pitch results in loss of vis-

ual perception (this also occurs with severe oscillatory vertical accel-

eration) and loss of equilibrium. In most cases, the driver reduces

vehicle speed before either the oscillating vertical or pitching acceler-

ation reaches such extreme values, or the occupants insist that he do

so. Damage tests with humans to determine when vertical acceleration

causes injury, pitch acceleration causes loss of visual perception, etc. ,

have been conducted using simple harmonic motions. [ 3J [4] Results

of such tests cannot be directly converted to the case in which the oscil-



lations are random in character. Hence, bounds on vertical accel-

eration (also transverse, etc. ) and pitching acceleration set by

these two tests are not useful to us. Tests in progress and also pro-

jected will be with randomly oscillating acceleration, and, when these

results are available, they should establish quantitative bounds on hu-

nma tolerance to acceleration in random oscillation. In any event, it

is reasonable at this time to base ride criteria on random oscillatory

acceleration in vertical acceleration and pitch.

A number of drivers of military vehicles also pointed out that

when large gun tubes are carried in a turret, limiting vehicle speed

was frequently set by violent oscillations occuring in these tubes as a

result of severe ybicle pitch.

We shall select two quantities as measures of the severity of a

random oscillation. One is the magnitude of the largest peak in the

power spectral density. The smaller the mazim peak, the lower

the ordinate bounding the entire spectral density curve. While the

work of Goldman C 33 is not applicable, it does suggest that low

values of this bounding ordinate may be associated with a comfortable

ride from the human standpoint in random oscillatory acceleration.

The variance is a measure of the spread of a probability distri-

bution about its mean. A large varianc, implies that the probability

of a significant deviation from the mean is large. For a reasonably

smooth random oscillation, the variance may thus be used as a meas-

ure at any time of the probability of the oscillation deviating from its

mean by some specified amount. Hence, by reducing variance, the

probability of large excursion in such an oscillation is in general re-

duced.

It is well to point out that other aspects of vehicle acceleration

may provide useful ride criteria. In particular, the work of von

Gierke C 4 3 and others [5] suggests that minimum acceleration

3



power spectral density (vertical translation or pitch) in a band from

3 c p s to 10 c p s might produce the best ride from the human stand-

point. Thus, the peak in this band could be a measure of the sever-

ity of a random acceleration.

In this paper, we shall study the influence of several vehicle

parameters upon an optimal ride criterion based either on minimiz-

ing the largest peak in power spectral density or on minimizing the

variance in vertical translation or pitch acceleration. All numeri-

cal results presented pertain to these optimal ride criteria.

We shall begin the main portions of the paper by presenting

some elementary remarks on such statistical quantities as mean,

variance, covariance, power spectral density, m. s. continuity,

etc. as they apply to the track on which the model moves. The phys-

ical aspects of the model considered in the equations of motion are

then discussed. Section IV presents the equations of motion and

shows how the power spectral density of vertical translation of the

frame, etc. are obtained. Numerical results on ,parameter studies

for two special cases uf the vehicle of Figure 1 and some general ob-

servations are given in the final section.
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U. Track Model

A detailed discussion of a stochastic model of ground rough-

ness is being presented elsewhere [C ] . It suffices for the purpos-

es of this paper to simply assume that the track elevation vs horizon-

tal distance is a random function possessing statistical properties that

ground roughness along a line of reasomable length is likely to peasess.

In particular, we shall confine our assumptions to second order prop-

erties E 7) , i. e. to properties which can be deduced from covari-

ances. Thus, explicit probability distributions of ground roughness

or elevation are not employed.

The mean response of a linear vehicle to a non-zero mean

track elevation may be treated by deterministic and well known meth-

ods. The flactiLations of the response about the mean motion, on the

other hand, must be treated by probabilistic methods. Since we are

priznarily interested in the latter, we shall assume that the mean track

elevation has the constant value zero. As we wish to employ second

order properties, it is required that the track of elevation be a second

order (7] random function (r. f. ). Member functions of ground ele-

vations are, of course, oscillatory in nature, but they should not con-

tain discontinuities involving more than finite Jumps. The assumption

of mean square (m. a.) continuity ( 7] is usually sufficient to eliminate

unreasonable member functions and we shall employ it. Finally, in or-

der to be able to employ the concept of power spectral density and the

techniques associated with it E[8,we shall assume that ground elevation

vs horizontal distance is at least weakly stationary (7) . This means

that at least the first two probability distributions do not depend upon

the location of the origin of the horizontal distance.

As an additional comment upon the fact that results given in this

paper only depend upon second order properties and not upon particular

types of distributions, let us note that whether a particular representa-

tion of ground elevation as a r. f., is Gaussian or not is of no consequence.

5



There are essentially two ways in which it is convenient to

represent ground or track elevation Yo (x) as a r. f. of the hori-

zontal coordinate x . In one way, an explicit formula for Yo (x)

in terms of a family or set of random variables (r. v's. ) is adopted,

and, in the other, certain statistical requirements are postulated

(zero mean, second order, m. s. continutiy, and at least weak sta-

tionarity) and a certain integral representation meeting these re-

quirements employed. Each procedure has certain advantages; hence

we shall discuss them.

A formula adopted in previous papers [ 1 2 [ 2 ] is

(2.1) Y() 2ja Cos (Aj X# +

where aj and Aj are ordinary constants and the Oj are inde-

pendent r. v's. uniformly distributed over an interval of length 2 r

Thus, O (x) is a sum of cosine functions having randomly distributed

phases. The Aj have the dimensions of length to the minus one power;

and, when divided by 2 r give cycles per unit length. Hence, they

may be regarded as angular "length" frequencies. The aj are, of

course, the amplitudes of the simple harmonic elements. The statis-

tical properties of (2. 1) are well known [ 9 ]; we easily find that

n

)-,2 E I 2r0/ (,).Cos A. -Xp222 I'(,,,x,: L-{•:• W •o w = •.o;o (jx,-x,,

2 n

cr,(x) =F (x:x) X) of
YO Y0 j-1



It is perhaps appropriate to review briefly the meanings of these,

equations. The first states that the mean of Yo (x) is zero. The

third states that o' (x) is independent of x and since for finite

aj and finite n it is finite, Y6 (x) is of second oarder. rY (x,, xr)

is differentiable any number of times with respect, to x1 anC; Xg

t hus, Yo (xi is m. s. differentiable any number of times. (On-

,i•:,d, the member functions are differentiable to any order. ) Final-

ly, since Fy(xi , xe) depends only upon x 1 -x, and the mean is

constant, we know that .Yo (x) is at least weakly stationary. Hence,

the requirements enumerated above for the random function which

is to represent ground elevation vs horizontal are met.

If n is replaced by infinity, there are conditions- -which we

need not state here- -oni the aj and A] if YO (xW is to be second

order and m. s. continuous.

The power spectral density of Yo (x) is given by the formula
(9 1

(2.3) PO A /j 8(0A 1

where (A - Aj). is the delta function centered at Aj with the proper-

ties

f 8 0dA = (A l-,Ai)=O if ,A # 1

S -00

We shall call2 a/ the weight of the power spectral density at Aj.

If YV (x) is interpreted as a voltage applied to a resistance of one

ohm and x is interpreted as the time, then the integral of PF (A)dA

between AO and Ab (> Aq) is the average power in Yo (a) between



those values of A On setting x, - x, x. we may write down the

well known [ 8 ] formulas

Yo (x)b - P (A )cos A xo dA

(2.4) P2(Af 0 cosAxOdxO

oo =fPb ()dA

That is, the covariance ry (x°,) and the power spectral density

Pyo (A) are Fourier transforms of one another.

If a set •,"', #0 of the Oj are selected with the aid of a

table of random numbers, say, then one member function

n

(2.5) yo(X 2 GjCos (Aj x+*#,

of YO (x) is obtained. Different selections of the 0, lead to different

member functions. We have shown elsewhere [ I I how it is possibleJ

to select the a] and Aj so that the integrated power spectral (Ieiisiv•

A

of (2. 3) approximates as closely as is required to the integral

A
JP(' dA'

of soll,,t px'escr ihecd or givenl pJoWeIr spect raj ,denlsity P(A) Silcc su'..

a pIn oce duve dete rrnines the a and A, it is th•'s possibhIt, with (2. a)

8



to obtain a deterministic member function Y (x) of the random func-

tion (2. 1), and the integrated power spectral density of this Yo (x) ap-

proximates to the integral of the prescribed power spectral density

P (A) . A graph, or for that matter, an actual track* of a section'

of the member function (2.5) belonging to this YO (x) can therefore be

constructed.

The advantages in employing or considering (2. 1) are that a

simple and readily interpretable formula for Yo (X) is available, mem-

ber functions are easy to obtain and present in graphical form, if desir-

ed, and the power spectral density (2.3) possesses an interpretation in

terms of well known electrical engineering concepts. These advantag-

es of (2. 1) prompted us to introduce it for the benefit of those readers

whose background in random function theory needs refreshing. The

disadvantage in using (2. 1) in analytical work stems from the fact it

often leads to a good deal of unnecessary algebra.

Let us now examine the formula

(2.6) Y_ (x)W= f/eiax

where the integral is to be interpreted in the m. s. sense [ 7 J and

the random set function Z (A) is an orthogonal process [7 J with

the properties

A track calculated on this basis has been constructed at the Detroit

Arsenal.

9



SE{z}o

(2{7)oZ p (})py (-A()
(2.7)

-. 0 0

From these equations, we find that

E., Yx,, X,)

X -, f (e /d )y (A dA<
-0

0 0a-Y! # fX Py (A) dA <c

9A



Thus, YO (x) has a zero mean, is of second order, and, since the

covariance depends only upon xr-xI and the mean is constant, it

is at least weakly stationary. The last of (Z.7) and second of (Z.8)

enable us to demonstrate the m. s. continuity of (2.6). Hence, all

the requirements which we wish to impose on the r. f. representing

ground or track elevation as horizontal distance are met.

In what follows, we shall employ (2.6) rather than (2. 1), be-

cause the former lends itself to certain computations we wish to

make.

9b



Ill. Vehicle Model

Figure 1 shows the idealized linear two-dimensional vehicle

that is to be discussed. The rigid frame has wheel base length I ;

its mass is M; and its moment of inertia about its c. g. is Im. The

c. g. is at distance b from the wheel base center 0. Y W') is the

vertical displacement of 0, and 0(t) is the angular displacement of

the frame. We shall assume that Ohas a constant horizontal speed

v so that its x-coordinate is vt, t being the time.

The ends of the frame are supported on linear springs and

viscous dampers arranged in parallel. k. and cj (j-/Aare the

rear (1-1) and front (j-2) spring and viscous damper constants re-

spectively. These elements are taken as massless, the upper and

lower pivots are assumed frictionless, and they remain vertical

throughout the motion.

Idealized tires are assumed. Each has a rigid massless

frame of length 2oaj and a mass mi concentrated at the frame cen-

ter. These frames are connected by frictionless pivots to the bot-

toms of the parallel arranged spring and damper elements, as shown.

Kj4"j) and r, ((e) are, respectively, the linear spring constant per

unit length and the viscous damping constant per unit length which are

distributed in a parallel arrangement over the bottoms of the frames;

we assume these elements are massless. We shall make the initial

assumption that K'((-) and Yj (f ) are even functions of ej ; at a

latter stage, we shall simply assume they are independent of

Contact of the tire spring and damper elements with the track a road

is assumed to be maintained at all times. 9,(t) is the angular dis-

placement of the rear tire frame and 0 (f) is the angular dispplace-
I

ment of the front frame. The vertical displacements of the masses
ml andm? are Y(f) and Y (t), respectively.

Gravity will be neglected. Further, all angles are assumed

to be sufficiently small so that cosines may be replaced by unity and

the sines by the angles in radians.

10



IV. Analysis of Vehicle Dynamics

For the vehicle model just described, we find the equations

of motion to be

M(Y~b9)=-F/(t)- F(t) ,

(4.')
m, F, W

,,m Y = FW t/-FW, ,

where

F,(tj..,,(r+-ke- Y,) +c,(;,+• -L

(4.2)

-a2

FW f I , Y',',' e•,-,1,- YO',,.-- +,,

and where derivatives and integrals are to be interpreted in the in. s.

sense [7 ].

11



To simplify the analysis from this point on, it is convenleni

to assume that the vehicle is symmetrical, i. e.

k,=k, = k , 'r= -

,= o=K ,K
(4.3)

'Y M. M, =rn=m

b-=O

The equations of motion may now be written in t•ke fow-m

W+2,, ,+ 't Y)-9 2#W ++,=ro

IW I,€,, I W46 + i <,, Z

(4.4).

0, (__.__ WO + <rI 0) ._ _ i. Y,
=- :f K 2 C 0 2

C&J 2 W49 W

WY

12



where now

-5) 2r, kl t

YM M a 1

K- K(e)d(, cf y( de

These symbols have the usual interpretations given in small vibra-

tion theory. The angles 0/ Wt and 0.. (M drop out of the third

and fourth of (4. 4) since we have taken K (0) and Y(f) to be even

functions of g'.
.We must now employ a -representation for Yo,(x). As mention-

ed above, it is convenient to use (2. 6). It is also convenient at this

time to assume the forms of K (,() and YY() are the same. Thus,

where g (if) is even in (and the two non zero terms on the right

hand sides of (4 4) become

(4.6) e iG + e dZ("L)
02fe*-

_mG

respectively, where

(4.7) W=Av V G(-W9)=* I~ g()e V d

13



With v a constant, YO (v f) and YO (v) are still at least

weakl., stationar,. It follows [ 8 ] that Y(t) , O , Yr(f) , 0 9)

are also at least weakly stationary, since they are related to Y. (vt)

and its n. s. derivative )o (vN) through a system of constant co-

efficient linear differential equations. Thus, we ma'. write

Y(t) f f V iwf dU (W)

9(f) = ff e/WtdV(w)

(4.8) 
O

Y, (f) = f iwt dW(W)

Y- (t) = Ie /t dw (,)

-00

the random set functions I (W'), V (w), W, (6'), W,(a) being orthogonal

processes. The substitution of (4. 6) and (4. 8) into (4. 4) provides

us with the following equations for the determination of dU (60 ,

dV(w), dW,(w) and d%(w) s

14



(w- w'# i2ý, wyw) dV(w)*f- (af#i2ýa W,)dW (W)

- y y (#4%W) dW2 (W) -0

- a / w~ ',w)dVi'w)#++(~/ V*ww W (w)

WY NO

dU (W)- 2_ W24 4W~d(

4L , 24' WL
woe SVGv )(+)-dZ (-p)

WO



The .soliltmo of the first two of (4. 9) for dW, (w) and dW2 (o•/
gives

d W(W) -- w, dU(w) * w. dV (w)
w

(4.10)

d (W -w/ dUk(W) * Wt fVL)J
w

with

w - (w,•+ i2 w z~w) (WjO+ i2. aw)

The last two of (4.9) with (4. 10) determine dU'iv) and dV-*)

F dU/(w)= -_ cosL Jdzif(4.12) { , +9)o t (. ine dZ(--- ,d

whe re

U/ 2 (/*-) ( ,

WW' w .- ,+ i ('24 o w + a-,16

16



The power spectral density of Y()1, for example, is given

by a formula similar to the second of (2. 7); it is

(4.14) 2 py~c9 k {d¼)

Hence, with the first of (4. 12) and the second of (2. 7), we find that

and similarly,

(4.15) 2. ('- <-/+

•~ W _1,(4_x_ WO ,_ J.• ] o••

+/ Py (M-)

17



Two special cases of the system shown in Figure 1 are of

particular interest in this paper. The first is obtained by replacing

thc: idealized tires by massless point follower. The power spectral

densities of the vertical displacement Y (f)+ z 0(0) at a point on

the frame at a distance z along the frame from the c. g. and of

are

+ 1 •{-- 2 61L}}¢

P (Z' W

y 
W

Y WvV - -S+81 [ sin-WO WWe,.,,,.). - ~- j, -/•'-• -#)
+(2, ,,,) [ (2+,>. -•): W,4=,.-ot V

jo• &- . V

W,•., WO -Wo= Y, )[,+2 W ) ']

Cos- Wl+ .O" '
Th +oe spcrldniisofPf.•# n ftlcvria oii

aTh poinsower spehctrlde"nsrties ofher than its andg.fmahe vrtocad intio,"

s.arriv mannrer.

18



respectively, where the frequency range is from -W to CO

The second case is obtained from the system shown in Figure

by making the two elements connecting the frame and the tire mass-

es rigid and lumping the tire masses in with the mass of the frame;

we find that the spectral densities of Y()+ ziOff) and Ofe)

are

(4.18) ,c (z, We G(a

We have omitted derivations of (4. 17) and (4.18) since they follow

almost the same sequence of steps that we employed in obtaining

(4.15) and (4. 16) from (4.1).

19



V. Discussion and Results

It is possible to draw a few general conclusions from the

results given in the previous section.

Examination of (4. 15) and (4. 16), say, reveals that the half-

tire frame a half foot print length a only enters these equations

through the term G(6. where ( see (4. 7)],

and V (() is the distribution along the frame of the parallel ar-

ranged linear spring and viscous damper tire elements. Since 6

is an integral of g 60 )P v'/2a over the foot print length,

6 ( -•) represents the smoothing of the roughness in the track due

to the idealized tires. Thus,

(5.1) GP

may be regarded as the power spectral density of the input to the ve-

hicle obtained from the power spectral density of Yo(x) after smooth-

ing by the idealized tires. This suggests that in the analysis we could

have ignored the tire-foot print length provided the track Y. (x) with

power spectral density Py ('- ) were replaced by a smoothed track
0' V

with power spectral density (5. 1). Advantage of this point may there-

fore be taken in future investigations. The conclusion that a tire is

a smoothing device in some sense is in agreement with results ob-

tained on large low pressure tires.

z0



In the numerical results presented below, we shall assume

t hat

and, thus,

e sin -

V

it is clear from this equation that the larger a, the narrower the

peak in the term on the right. Hence, the larger a, the smaller

the high frequency portion of (5.1) and the greater the smoothing

influence of the tires. Conversely, the smaller a, the broader the

peak in the right of (5.3), and the less the smoothing effect of the

tires. Actually, the selection (5.2) is not particularly realistic,

since g9(1) should approach zero as f--- ±0. However, (5.3) is easy

to compute with, provides an estimate of the influence of the tire on

spectral density of various quantities, and so is adequate for pres-

ent purposes.

The power spectral density Py(co)contains the wheel base

length I in just one term, namely in(/+Cos at2/v ).Since this term

multiplies P (w/v),just as does [6 (W O/v)])it may also be re-
YO

garded as a filter acting on Po (10/v). Clearly, the term filters

periodically, depending upon the value of 1/v . Thus, wheel base

length and speed v may be expected to have a substantial influence

on certain aspects of vehicle ride. The term (I-cos WIN) in P. (W)

may be interpreted in the same sense.
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From the first of (4.8), we deduce that

(5.4•) T 01 i, Or -, 0 - Pr (W) dw

The r.f. YrN) has two m. s. derivates ý(O) and V(f) ; it follows

(8. that the covariances of these r. f are

r ,r

(5.5)

Sa ~rj

Hence, on combining (5.4) and (5.5) and making use of the definition

of the covariances of )' () and 9(t) in terms of integrals of their

power spectral densities, we find that

/~w)'W W)
(5.6)

PP (W) =w P.(W)

thus, the power spectral density of the first or second m. s. deriva-

tive of a suitable r. f. may be found by multiplying its power spectral

density by W or by cwA , respectively. This rule is quite general [8]

and we shall use it without further comment in what follows to obtain

the power spectral densities of e (f) , and F(f)+z 00)

The constants which define the vehicle and track enter the spec-

tral densities of interest in a fairly complex manner. Further, the

measures of ride roughness that are being employed involve these pow-

er spectral densities either through an integral (variance) or a deriva-

22



tive (peak value). Hence, we shall not employ analytical methods

to perform quantitative parameter studies on ride roughness but in-

stead use numerical methods.

A definite formula for Pyn()is now required
0

(5.7) P A0V 0

The quantity M• is the variance of ('x); AO is a constant which

may be used to adjust the spread of the single peak possessed by

Pyo (A). This formula appears to give a reasonable fit to a power

spectral density which we obtained from ground measurement. Fur-

ther measurements may well suggest different expressions for the

right hand side of (5.7)*. However, for the present, it is a reason-

able selection.

A set of dimensionless parameters we have found convenient to

employ in numerical calculations is the following:

r WV'V_ VO

(5.8)

where v0 is a reference speed andp is the radius of gyration about

the c. g. of the frame. In terms of these parameters, the first of
(4.17) can be rewritten as

*The covariance corresponding to (5.7) is analytic; thus, the r. f.

having this covariance is m. s. analytic [8 Ch. 7] While m. •.

analyticity has certain predictibility implications, we shall ignore

them.
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c casaz.r)[1/+: (24 +J fj' 7  (2 r)

8 i a r . 4 (rt1-
'Ir

+ 4j (/-cos zv [Jr)

for example. The other spectral densities can be put in a similar

form.

As mentioned in the Introduction, the two ride criteria which

we shall employ are either the magnitude of the largest peak in the

power spectral density or the value of the variance for acceleration.

The accelerations of the frame we shall consider are • (I) ,

S(t)+ + (t) and 0 (M; the first is vertical acceleration at the

c. g., the second is vertical acceleration over idealized wheel-tire,

and the third is pitching acceleration.

Only the two special cases of the vehicle shown in Figure 1

will be considered at this time. The formulas needed for the power

spectral densities are obtained from either (4. 17) or (4. 18). Ordin-

ate values for vertical acceleration results are divided by oe ,
and those for angular acceleration results by o•/w/l' these factors

will be omitted on the graphs. We shall also omit the subscripts 1

or 2 on the ordinate designation, sine e the subs( ripts I and 2 re-

fer to the cases o/1--0 and o/l 0 0 , r(.spectivly, and I he.e art

indicated explicitly upon the graphs.
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Figures 2-4 present numerical results on the maximum value

of the power spectral densities and on the variances of

r"(t), Y(w+z'(t) and 9(t) as functions of the parameters 4X and 0/1

It is immediately clear that results on variance with

a/; =0 and a/l - 0.0625 and also on magnitude of the maximum val-

ue of the power spectral density do not differ appreciably until W be-

comes larger than 4 or 5. We note that 0/1 -O.O 6 5corresponds to

a total foot print length--rear plus front-- of 25%/ of the wheel base

length 1; most wheeled vehicles have a value of approximately 10%6.

Thus, a/$ does not appear to be a significant parameter with the ride

criteria we are employing unless t exceeds 4 or 5. In what follows,

therefore, it is convenient to set a/;-0.

On the other hand, changes in the parameter ar have a pro-

nounced influence on the magnitude of the largest peak in the power

spectral density and the variance of the various accelerations. This

strong influence is due to the fact that the location of the bands on the

Co -axis which the trigonometric terms containing 0 filter change with

cc , sometimes reducing peaks sharply and sometimes reinforcing

them.

For the vertical acceleration, there is a unique value of c which

makes the peak magnitude and variance a minimum. Thus, if the best

ride under the conditions assumed is determined either by the minimum
peak magnitude in the spectral density or by the minimum value of vari-

ance, we see that for each point on the frame there is a unique value

x which provides such a best ride; the range of cc values being from

.4088 to 2.6150. We also note, however, that slight changes from

these; ar values produced large changes in minimum peak magnitude and

variance, i. e. the best ride is a sharply tuned function of ac. For too

large a valuLe of a- with Z= -L the varianLv is larger than wath a vcry2
small tX ; but with z = 0 , the variance is always reduced below its

valet at x-=O by increasing x.
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The peak value in the spectral density and the varianc, for the

pitching acceleration exhibit a difference dependence upon a" thdn en-

countered with the vertical acceleration, as may be seen from Figure

4. Each is zero when cc equals zero; as ao increases each reaches

a maximum value, falls to a minimum and then oscillates. The value

of ac which gives the best ride in vertical acceleration does not give

a best ride in pitch. However, it must be remembered that the param-

eter f is adjustable. Hence, it may be possible to select a* and

F to give a best ride from the point of view of vertical acceleration

and pitch, or, at least, a good compromise to a best ride in both

cases; this point is now under investigation.

The ride criterion used in Figure 5 is the magnitude of the larg-

est peak in the power spectral density of N{t) . With S-= 0 , A-1.00

l /.00, the value of dr which makes the peak a minimum is plotted

as a function of C. (See Figure 5a). In addition, the minimum peak

value is plotted. Although the range of the minimum peak is not

large for the 4. considered, there is a unique 4y ( .6953) and

ao (-- 1.9170) which makes this minimum peak a minimum. Thus,

one pair of C.. and X give the best ride in the peak of power spectral

density sense. Figure 5b is a graph of the peak in the power spectral

density of POt) as a function of w with -0 --- 1.00, -69

O--1.9170. A P>/ corresponds to v<vo and r</ corresponds to v>vo.

Thus, as speeds decrease below v0 , which may be looked upon as

design speed, the peak value falls gradually; however, as v increas-

es above v0 the peak value rises sharply, i. e. the ride rapidly gets

worse.

The results presented in Figure 6 correspond to results given

in Figure 5 except that the ride criterion is now the value of the vari-

ance of Y*(*). Figures 7 and 8 correspond to Figures 5 and 6 but for

Y(t)+•- 0') . The conclusionsdrawnfromFigure 5 are reflected

in these three Figures.
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Figures 8 and 9 prescnt results ,on (f) that Is tfie: an

as given in Figures 5 and 6, respectively, for Y (t) . Howu'ver,

with 0(f)neither the minimum variance nor minimum peak value

has a minimum value as a function of C. This result agrees

with the observation that the oscillations of 4#t) may be reduced

to zero by making I infinite and using a rigid suspension system.

For arbitrarily selected ty , these two Figures again show the

great sensitivity of variance and maximum peak value of power

spectral density to changes in P in the neighborhood of, -1I.

The parameter S was not changed in the studies reported

in this paper. We recall that 4& contains AO which is a measure of the spread

of Py (A) . At this time, we have no numerical value for A0

moreover, we are not certain that (5.7) is the most reasonable

choice for Po(A) . Hence, it does not seem appropriate to obtain

results with other than one value of 4 . It is worthy of note, how-

ever, that since

(5.10) a'zý A

if we had a numerical value for AO and the cc associated with a best

ride in same sense for a given tY , 4, etc., then a numerical val-

ue for the corresponding wheel base length could be obtained.

The results presented in this paper represent the beginnings

of an attack on the interesting problem of how to design a vehicle to

achieve higher speeds than obtained at present under off-road condi-

tions. A large effort will surely have to be devoted to obtaining a

statistical characterization of ground contour geometry and quantitative

ride criteria before either the method of attack proposed can be justi-

fied here and definitive design results can be obtained.
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